
Containerized Execution of UDFs: An Experimental Evaluation
Karla Saur
Microsoft

karla.saur@microsoft.com

Tara Mirmira∗
University of California, San Diego

tmirmira@eng.ucsd.edu

Konstantinos Karanasos†
Meta

kkaranasos@fb.com

Jesús Camacho-Rodríguez
Microsoft

jesusca@microsoft.com

ABSTRACT
User-defined functions (UDFs) have long been used as the de facto
way to extend the capabilities of data management systems. How-
ever, they are restricted to the specificities of each DBMS, and
recent demands for advanced analytics have increased the need for
complex UDFs that may require execution of arbitrary computa-
tion written in any programming language, management of library
dependencies, portability across environments and engines, and
resource isolation. These requirements go beyond what traditional
UDFs were designed for, and have given rise to containerized UDFs
that enable encapsulation and portability. However, this approach
is nascent and can result in significant performance penalties and
usability issues. In this paper, we present the first study that spans
all stages of containerized UDFs’ life cycle, performance bottlenecks
in their execution, and extensibility to support different engines.

Our experiments show that the performance of containerized
UDF execution can be greatly affected by system design choices and
that there are many trade-offs to consider. For example, regarding
themethod of communication with the containerized UDF, we show
that binary-based implementations minimize overheads and are
more than 2.4x faster than widely used text-based ones. Adopting
a newer general-purpose communication method such as Arrow
Flight can improve performance dramatically, causing a minimal
∼10% slowdown compared to non-containerized UDFs. Additionally,
containerized UDF start times vary wildly due to program size and
complexity, from .07s to 7s in our experiments. Our insights can help
DBMS developers make appropriate choices based on individual
use cases when designing their systems.

PVLDB Reference Format:
Karla Saur, Tara Mirmira, Konstantinos Karanasos, and Jesús
Camacho-Rodríguez. Containerized Execution of UDFs: An Experimental
Evaluation. PVLDB, 15(11): 3158 - 3171, 2022.
doi:10.14778/3551793.3551860

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/cage-paper-artifact/cage-vldb.

∗Work performed while author was an intern at Microsoft.
†Work performed while author was at Microsoft.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551860

1 INTRODUCTION
Users have always sought ways to expand the capabilities of their
database. Although the declarative nature of SQL has been the
main reason for its success and widespread adoption, there is cus-
tom logic that is hard to express in SQL. Therefore, user-defined
functions (UDFs) have become the preferred way to encapsulate
complex functionality (often implemented in a programming lan-
guage different from the engine query language) and increase the
flexibility of these systems. This need for extensibility is more para-
mount today than ever before. Data is consolidated in data lakes in
order to gain novel insights [28, 58]. There is even an effort to bring
data together across industries (see data market platforms [35]). In
this setting, modern data engines are asked to do much more than
the traditional database [19, 47, 48, 67, 71]: train models, perform
inference, drive business intelligence, visualization, etc.

The more broad the reach of data engines, the more users will
rely on UDFs to cover an ever-broadening set of use cases. However,
traditional UDFs cannot always cover all of these cases. UDFs can
fail to provide users with the flexibility and dependency isolation
needed for their workloads. Consider the common scenario of a
user that wants to use Apache Spark [2] to perform data processing
in Spark SQL and score their data using ML models called from
UDFs written in Python [47]. Each of these UDFs may require vary-
ing dependencies based on the model they are using—the wrong
dependency version can lead to runtime errors or incorrect results.
However, the user may not be able to alter the engine host en-
vironment to install those dependencies, e.g., the query is run in
a managed environment, it is not permitted by existing security
policies, etc. Even if the user can load the necessary dependen-
cies for their UDFs in the engine environment, several issues still
arise: (𝑖) UDFs within the same session may use conflicting depen-
dencies, and (𝑖𝑖) changing the computation environment requires
reinstalling those dependencies.

Over the last decade, containers, driven by the popularity of
Docker [4], have become the de facto standard for running arbi-
trary code in an encapsulated environment. Containers are eas-
ily portable across computing environments and are lightweight,
i.e., they share access to the host operative system, leading to fast
startup times and efficient host resources utilization [25, 82]. These
reasonsmake a compelling case for leveraging containers to execute
UDFs [22, 78]. In particular, users can create an image packaging
their UDF code and dependencies so it can run consistently within
a container in different environments. Containerized UDFs can help
them overcome the aforementioned challenges, providing support
in the following areas:

3158

https://doi.org/10.14778/3551793.3551860
https://github.com/cage-paper-artifact/cage-vldb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551860
https://www.acm.org/publications/policies/artifact-review-and-badging-current

• Fine-grained dependency management. First, containers fa-
cilitate that user code can rely on arbitrary versions of libraries to
compute results. For instance, in the machine learning context,
a Python UDF may need to rely on specific versions of packages
available in public or private repositories.

• Programming language flexibility. Containers allow users to
write their function code in any language (e.g., Python, C#, Java,
Go). This can be a huge catalyst for productivity, since users can
focus on their function logic, relying on the libraries that they
consider more convenient to work with, rather than learning a
new language or reimplementing custom code each time.

• Cross-platform portability. Containers let users save time by
writing their UDF code only once and reusing it across engines,
as long as the engine can provide a native UDF implementing the
communication protocol with the container. Thus, UDFs can be
executed easily in engines of completely different characteristics
such as SQL Server [10] or Spark.

In a nutshell, combining containers and UDFs can bringmultifold
advantages for end users, as we further discuss in §2. However, there
are many options to consider when implementing containerized
execution in existing systems, as we discuss next.
Container image building and distribution. In order to effi-
ciently manage and operate a containerized UDF system for a data-
base engine, containers need to be built and distributed efficiently.
We look at aspects of the container life cycle that may apply to
containerized UDFs and share design trade-offs and best practices.
For example, how can we rapidly build containers when multiple
UDFs share similar dependencies? In the case where containers will
be co-located with the query execution tasks on the same nodes,
what are potential bottlenecks in rapidly distributing the container
images to all nodes in the database engine cluster?
Execution. In the case of co-located containers, which system de-
signers would be responsible for setting up, deploying, and operat-
ing, what are the start-up costs of different types of UDF containers,
and when and how many containers should we start? If, instead,
system designers leverage a serverless compute platform, such as
Azure Functions [59], to run the containerized UDF, how much
performance will we trade for that convenience?
Data exchange. Data needs to be transferred between the com-
pute engine and containerized UDF. One could choose different
implementation options for data movement, e.g., sockets, REST,
RPC. How does each alternative perform compared to each other,
running locally (with containers co-located with engine nodes) vs
remotely? In addition, we need to choose the data exchange format.
What are the trade-offs of a custom protocol compared to relying
on a generic data format such as JSON or Apache Arrow [1]?

Contributions. With the sheer number of choices available, the
goal of this paper is to highlight the performance implications of
various design alternatives for supporting containerized UDFs in
database engines, starting from container creation and all the way
through query evaluation. We make the following contributions:

• An analysis and evaluation of containerized UDF execution (§4),
given a representative architecture using Spark (§3).

• Performance impact of multiple design choices in a local, self-
managed setup (§5), such as data communication implementation
or container initialization.

• Trade-offs between local (co-located, self-managed) and remote
(external, hosted) container management and deployment imple-
mentations, including a thorough performance comparison (§6).

• Containerized UDFs using SQL Server (§7), an engine with dif-
ferent characteristics compared to Spark, hereby showcasing the
flexibility of this approach.

2 MOTIVATING EXAMPLE
In this section, we provide a short overview of a common approach
to UDF implementation in existing data engines (§2.1), following
which, we discuss the limitations of such an approach (§2.2).

2.1 UDF Definition and Execution
Although every data processing system proposes a different flavor
of UDFs, there are commonalities in the steps that a user should
follow to execute their custom code across them. Apache Spark [2]
is an open-source distributed data processing engine. Next, we use
Apache Spark to illustrate the aforementioned steps and some of
the challenges that can arise in the management of UDFs within
Spark and similar systems.

Assume a user wants to perform batch inference (also known as
scoring) on data stored in Spark using a pre-trained scikit-learn [17]
model.
Implementation. In this example, the user will start by writing a
Python scalar UDF for Spark, which could be done as follows:
@udf(returnType=FloatType())
def udf_skl_predict(model_path, data):

loaded_model = pkl.load(open(model_path, 'rb'))
return loaded_model.predict(data)

The UDF will operate on single input argumentsmodel_path and
data, load the model from the provided path, feed the data into the
model, and return a floating number representing the prediction.
Similar to other engines, Spark provides auxiliary libraries with
pre-defined annotations that can be used to decorate the function
implementation, e.g., in this particular case, the UDF return type.
Registration. After implementing the UDF, the user needs to ex-
pose the new UDF (including its dependencies) to the engine so it
can be referenced at query time. In this case, the registration is done
through PySpark (native Python interface for Spark) and consists
of a single method call providing the user-facing function name
and a reference to the UDF.
spark.udf.register("PREDICT", udf_skl_predict)

Other data that can be provided at registration time varies greatly
across engines, e.g., behavior characteristics, security mode, etc.
After executing this method, the UDF will be callable within the
scope of the current Spark session. In addition to registering the
function with the engine, the user also needs to ensure that all Spark
nodes have the correct environment to execute the UDF. Concretely,
PySpark provides different ways to manage Python dependencies
within a Spark session [50], either using Conda, Virtualenv, or PEX.
Execution. Finally, users run queries referencing the newly created
UDF as they would normally do with any other function.

3159

spark.sql("SELECT PREDICT('<file path>', col_x) AS p "
+ "FROM table").show

The internal execution mechanism varies greatly from engine to
engine. Spark is written in Scala, and thus, only UDFs written in
languages supported by the Java Virtual Machine (JVM) can be run
natively within the engine. In addition, Spark provides support for
UDFs written in Python1, such as in this example, and the Spark
community has recently introduced important improvements to
make Python UDF execution more efficient, e.g., vectorized UDFs
built on top of Apache Arrow [1], reducing the invocation cost and
data serialization overhead between JVM and Python processes.

2.2 Limitations of Existing Approach
As noted in the Introduction, there are several limitations with the
aforementioned approach to UDF implementation.
L1: Fine-grained dependency management. The dependencies are
defined within the scope of a Spark session [33, 65]. Consider a
common scenario where the user calls their UDF again within
the same query, or in another query within the same session, but
this time using a model that was built using a different scikit-learn
version, and thus, requiring a different Python environment to avoid
an error [18, 20]. The current approach cannot handle dependencies
at this fine granularity.
L2: Programming language flexibility. The example above considers
an engine with built-in support for Python, the programming lan-
guage used by the UDF. Now assume that the user wants to execute
a function written in C#.Without native support for C# in Spark, the
user will need to reimplement the function in a supported language.
L3: Cross-platform portability. The UDF implementation and han-
dling of dependencies are tightly coupled with the Spark engine.
Over time, the user may want to use the same UDF simultaneously
in another engine, or the user’s organization may decide to migrate
to a new engine altogether. Even if the target engine has support
for Python, these two scenarios would likely require (𝑖) rewriting
the UDF, and (𝑖𝑖) setting up all the dependencies in the new execu-
tion environment correctly, as the current approach is not portable
across engines and environments.

3 CONTAINERIZED UDF EXECUTION
In the previous section, we discussed the general process for creat-
ing and calling a UDF. In contrast, we introduce containerized UDFs
in this section. In particular, we briefly describe containers in §3.1,
then present a reference architecture and describe the modified
steps to define and execute a containerized UDF in §3.2.

3.1 Background on Containers
Containers are a lightweight way to package code, runtime, and
all dependencies into a single runnable unit. Containers are dif-
ferent from VMs in that they virtualize resources at the operating
system (OS) level [25, 82].

Containers are stored as container images, which consist of a
layered file system. The layers in the container image are read-
only and represent different components that are added to the

1PySpark is popular among data scientists, who prefer to rely on the rich ecosystem
of data science packages available in Python.

Data Processing
System

Containerized UDF Service
Containerized UDFs

Client

SELECT func(*)
from mytable

Execution
Engine

Container
Manager

1

3 4

2

data

User code and dependencies

def my_func(data):

UDF Container
Image

Container
Registry

0

results5results6

query create

def func(data):
service.my_func(data)

retrieve

Registration Service

artifacts

def
my_func(data):

requirements

Figure 1: End-to-end workflow. Setup steps shown in blue
dashed lines, execution shown in solid black lines.

container at creation time. The layers are stored in compressed
(zipped) format, and each container image also includes a manifest
file with a list of hashes, one for each layer. Often, a container image
starts with a base image in the first layer such as Ubuntu or Alpine
(a common lightweight Linux-based OS), and then the user may
include additional layers consisting of packages or software on top
of that layer. The layers of the container image are stored in the
order of the commands in the Dockerfile, a script that describes how
to build the image. To launch a container, the image is deployed
into a running container instance, which will include a thin writable
layer to store any state created at runtime.

Container images are usually handled by a container registry, a
repository for storing and retrieving the different layers of each
image. After the images are built, a client can be used to push
them to the registry. Each layer of an image is compressed and
pushed separately, as described in the manifest files. The registry
uses the manifest files to track which layers are common among
container images. For example, assume a user creates two images
with Alpine as the base, and then adds different software to each
image in subsequent layers. When the user pushes the first image
to the registry, all layers will be sent and stored. However, when the
user pushes the second image, the registry will identify the Alpine
layer, and thus, only the subsequent layers will be sent.

To retrieve the container image, the client can pull it from the
registry layer-by-layer. If any of the image layers are already present
on the client’s machine, that layer will be skipped. As the layers
are pulled, they are also extracted from the zip format so that they
can be launched. Fully managed container registry offerings have
proliferated over the last few years [5, 9], especially across cloud
providers [37, 56, 79].

3.2 Containerized UDF Definition and
Execution

Other systems [22, 78] have forayed into the space of container-
ized UDFs, enabling support for external functions backed by cloud
serverless platforms. The design space for utilizing containerized
UDFs for generic function execution in data engines covers a wide
range of topics. We seek to characterize the design decision land-
scape and evaluate a variety of possible solutions to aid in decision-
making. To this end, we highlight the important components that
would need to go into a such a system. In this section, we introduce
a reference architecture, based on similar systems, that implements

3160

containerized UDFs within a data processing system. The archi-
tecture and the interaction among its components are presented
in Figure 1. Next we describe the steps to define and execute con-
tainerized UDFs in contrast with the example introduced in §2.1.
Implementation. Just as in the prior example, the user must bring
in their UDF code, such as a Python function for scoring an ML
model. Additionally the user must bring in a list of dependencies
(such as a Python requirements.txt file [15] and/or a list of Ubuntu
packages), and any additional files that the UDF environment might
need (such as an ML model). Figure 1 shows these dependencies at
the top of the workflow graph in the dark gray box.
Registration. The user submits the UDF code and dependencies
to the Registration Service. Continuing in Figure 1, the Registration
Service packages them into a UDF container image 0 , and pushes
it to a container registry. The containerized UDF will include the
original UDF with boilerplate code for (𝑖) decoding incoming data
requests, (𝑖𝑖) calling the original UDF logic, and (𝑖𝑖𝑖) returning the
encoded result. The Registration Service also generates a user-facing
client-side UDF 1 (that the client will use to call indirectly the
Containerized UDFs) and registers it with theData Processing System.

This setup also employs a Containerized UDF Service, which
can access the container registry and is accessible from the Data
Processing System. This service, which can be co-located with the
engine or running remotely as we will study in §6.2, contains the
Container Manager , which is responsible for orchestrating container
deployment. The Data Processing System contacts the Container
Manager 2 which will coordinate distribution of the image to all
worker nodes. Depending on its settings, the Container Manager
may spin up the containerized UDFs (green dotted arrows) at this
time to optimize performance, or it may wait until the user issues a
query to save resources; we evaluate both options in §5.3.2.
Execution. In the lower-left corner of Figure 1, we show the client
submitting their original query 3 referencing the client-side UDF.
The query is compiled and submitted to the Execution Engine. Dur-
ing execution, the client-side UDF sends the data in batches to
a URL provided by the Container Manager 4 , which acts as a
load balancer to distribute these batches across the containerized
UDFs. If the containers were not started as part of the Registration
phase, they will be started now. The communication between the
client-side UDF and the Containerized UDF Service is governed by a
communication protocol. As we will explore in more detail in §5.1,
different data formats and communication implementations can be
supported. The Containerized UDFs process the data and return the
results, which are then sent back to the client-side UDF inside the
Execution Engine 5 . Query execution proceeds as usual until it
completes and its results are returned back to the client 6 .

As we can see from this example, containerized UDFs solve the
limitations that we described in §2.2. Concretely, UDF dependencies
are completely isolated from other UDFs and the Data Processing
System, and thus, can be handled at a finer granularity (L1). In
addition, users are not forced to implement their UDF in any specific
programming language depending on the Data Processing System
(L2), as the original UDF is not directly called by it. And finally, the
Data Processing System can be swapped out for any other system as
long as it can provide a client-side UDF that can communicate with

Containerized UDF Service

Spark Worker
Node 1

Executor
task 1

Spark Worker
Node 1

Containerized UDF Service

…(scale
out)…

Container Manager

Executor

Containerized
UDF

Container Manager

(a)
(b)

cloud serverless platform

Containerized
UDF

Containerized
UDF

Containerized
UDF

Containerized
UDF

Containerized
UDF

task 2 task 3
task 1 task 2 task 3

Figure 2: (a): Local, self-managed containerized UDF service.
(b): Remote, managed containerized UDF service.

the Containerized UDF Service, which prevents the user from being
locked to using their UDF with only a specific data engine (L3).

In the experiments presented in §4-§6, we evaluate this archi-
tecture using Spark as the Data Processing System. However, as
we mentioned previously, our study aims to provide results and
insights that are applicable across engines that can rely on con-
tainerized UDFs. In Figure 1, the user-facing client-UDF generated
by the Registration Service and the code to register it with the Data
Processing System are specific to Spark. However, the rest of the
implementation would still be similar for other engines supporting
UDFs. We discuss and validate the generality of the reference ar-
chitecture in §7, where we replaced Spark with SQL Server, and we
only needed to change the user-facing client-UDF, and the code to
execute the registration with the engine; the rest of the implemen-
tation remained the same.

4 END-TO-END EVALUATION
In this section, we look at the end-to-end performance of our refer-
ence architecture. We focus on some high-level takeaways before
digging into sub-component performance and providing more de-
tails in subsequent sections. To understand how the characteristics
of the UDF affect the implementation choices, we used random data
on UDFs with different characteristics:
• Data-intensive UDF. It takes a pre-trained scikit-learn [73]
random forest model with 28 inputs, scores and returns the data.

• Compute-intensive UDF. It takes an integer as input and re-
turns the largest prime factor of that integer.

Experimental setup.Our experiments were performed on a Spark
3.0 cluster with 2 head and 4 worker nodes (provisioned by HDIn-
sight [8]), each with Intel®Xeon®Platinum 8171M CPU@ 2.60GHz
(8 Cores), 64GB RAM, and Python 3.7. Each experiment was run 7
times, dropping the low/high values and then averaging.We assume
that the containers have already been built and deployed.
End-to-end results. Figure 3 shows end-to-end runtime for both
UDFs using three different implementations across three different
data set sizes (100K, 1M, and 10M rows), which are scaled-up repli-
cations to show how the performance scales across the range of
sizes. For our baseline implementation (shown as solid lines), we
executed both UDFs as regular Python scalar UDFs and we did not
use containers, as described in Section 2.1.

Using the reference architecture presented in §3.2, we used two
representative implementations for locally and remotely managed
containerized UDF services. For the first implementation (Local), the
containerized UDF service was co-located with each Spark executor

3161

1

10

100

1000

10000

100k 1m 10m

En
d-

to
-e

nd
 ti

m
e

(s
) l

og
 sc

al
e

Number of rows

No Container Local Remote
No Container Local Remote

Data-Intense
Comp-Intense

Figure 3: End-to-end times for data and compute intensive
UDFs for no container, local (co-located self-managed con-
tainers withArrow Flight), and remote (JSON-based commu-
nication to a remote externally-managed endpoint).

on the same VM as shown in Figure 2a. For each Spark task, we
deployed a container locally on the same VM. For this experiment
we used Arrow Flight [54], a mostly zero-copy gRPC-based protocol,
to send the data and responses over localhost between Spark and
the containers. The performance (shown in dashed lines) is very
close to the no-container case, ∼10% slower across both UDFs and
all data sizes. The overhead is minimal because (𝑖) the network
latency is low over localhost, and (𝑖𝑖) Arrow Flight enables efficient
data transfer through zero-copy [26].

For the second implementation (Remote), we used Azure Func-
tions (AZF) [59] to act as the remote externally-managed container-
ized UDF service, shown in Figure 2b. The data is sent from Spark
to AZF as numpy [12] serialized using pickle [14] embedded in a
REST/JSON protocol. (Arrow Flight was not available on any of the
remote services we considered.) The performance (shown in dot-
ted lines in Figure 3) is significantly slower than the no-container
version: a ∼2.0-3.2x slowdown for the data-intensive UDF and a
∼3.8-4.4x slowdown for the compute-intensive UDF due to (𝑖) the
overhead of serialization/deserialization to/from JSON, (𝑖𝑖) the lack
of state between subsequent calls that would allow model caching
in scoring for the data-intensive UDF, (𝑖𝑖𝑖) network latency due to
the remote endpoint, and (𝑖𝑣) limitations [60] we encountered in
scaling up the remote service that made it difficult to match Spark.

Although the performance of the remote managed setup is the
poorest, there are several advantages to it. In particular, the co-
located setup requires operating and maintaining infrastructure.
Additionally, it needs sufficient local compute and memory to host
the containers in the executor nodes. On the other hand, a managed
servicemay be able to quickly scale the number of containers up and
down more easily, and may provide additional isolation guarantees.
§4 Key Takeaways:
• With local (co-located) self-managed containers, we saw only
∼10% overhead with our Arrow Flight-based implementation.

• With remote (external) managed containers, we saw a signifi-
cant slowdown (∼2-4.4x) compared to the no-container version.

Experimental Roadmap We next break down the process and
dive into performance factors related to local self-managed con-
tainerized UDFs in §5. We then look at trade-offs when using a

Table 1: Containerized UDFs communication alternatives.

Method Selected Implementation Overhead Generality

File Parquet to shared disk Medium High ✓

Binary Sockets: serialized numpy
over TCP Low ✓ Low ×

Binary Arrow Flight over gRPC Low ✓ High ✓
Text Web Server Endpoint High × High ✓
Text MLflow over HTTP High × High ✓

remote managed system for containerized UDFs in §6. Finally, we
discuss the extensibility of this design in §7.

5 SELF-MANAGED CONTAINERIZED UDFS
In this section, we dive deeper on running containerized UDFs
when they are self-managed, meaning when system designers im-
plement containers management themselves as opposed to relying
on an externally managed service to host the containerized UDFs.
First, we describe different communication alternatives between
the engine and the containers in §5.1. The choice of data communi-
cation implementation has an impact on performance. In §5.2, we
discuss this impact in the context of the end-to-end performance
of containerized UDFs, while in §5.3, we explore the impact on ini-
tialization of containerized UDFs as well as how this initialization
can be affected by UDF requirements and system architecture. Fi-
nally in §5.4, we examine additional factors impacting performance
throughout the containerized UDF life cycle.

5.1 Data Communication
As indicated in Figure 1, the data engine needs to send data to
the containerized UDF service endpoint and the endpoint needs
to execute the UDF over this data and send the result back. It is
important that the method of transport adds as little overhead
as possible while remaining as language and platform agnostic
as possible. In this section we experiment with how the data is
communicated between the database engine and the container,
and the impact of different communication implementations on
performance.

In §3.2, we explained that we need a client-side UDF to communi-
cate with the containers. Since we are using Spark, we use a Pandas
UDF [13]. This client-side Pandas UDF handles the communication
of data from the database engine to the container and back. The
client-side UDF is registered in the Spark environment and, from
the user’s perspective, gets called as if it were the user’s UDF. Un-
less otherwise specified, our experiments call the client-side UDF
in batches of size 10K (the default batch size for a Pandas UDF); one
batch corresponds to one call to the container.

Throughout the experiments in this section, we use the same
two example UDFs described in §4. To communicate data between
the database engine and the container, there are several options
which we summarize in Table 1 and describe next:
File-based: Passing the data by reading and writing from shared
files. This requires setting up a file share (which avoids network
communications if the database engine and container are on the
same machine) or a network file share between the database engine

3162

14.3 16.2 18.3
23.1

33.7

44.1

10m

En
d-

to
-e

nd
 ti

m
e

(s
)

fo
r s

co
rin

g
10

m
 ro

w
s

N
o

Co
nt
ai
ne

r

Ar
ro

w

Fl
ig

ht

So
ck

et
s

Pa
rq

ue
t

M
LF

lo
w

W
eb

 S
er

ve
r

Figure 4: End-to-end times for scoring 10M rows with differ-
ent transport layers with local containers.

and the container. It is also relatively simple to implement and trou-
bleshoot. The performance of this method can suffer depending on
how the data is stored and how fast the storage can be accessed
(disk speed or network speed using a remote disk).
Selected implementation(s). We mounted a volume into the con-
tainer on the same VM as the database engine to use as the shared
reading and writing location and used Apache Parquet as the seri-
alization format.
Binary-based: Network-based communication with a customized
serial/binary format. This method minimizes the amount of data
that is sent and and the cost of serialization is relatively low de-
pending on format (pickle [14], Apache Thrift [3], etc).
Selected implementation(s). For this method, we experimented
with two different implementations. The first is Sockets, which is
serialized numpy [12] over TCP. The sockets approach may limit
the language and library versions in which the user can write a
UDF (depending on serialization implementation). For example, the
usage of serialized numpy for data communication necessitates
that the numpy version in the database engine and in the container
match. However, we still chose to experiment with this option to
assess the overhead introduced by other implementations. In par-
ticular, as serialization is amongst the fastest way to transport data
(as opposed to verbose JSON), it represents a practical lower bound
for data transportation. The limitations of the sockets approach can
be overcome with the second implementation we evaluated, which
is Apache Arrow Flight [54] over gRPC.
Text-based: Network-based communication in a standard verbose
format such as JSON. The advantage of using a common format such
as JSON-based methods is that it can be read in any platform that
can parse JSON, and many REST endpoints support or expect this
format, making it an extremely flexible solution. A disadvantage is
that it can negatively impact performance due to the overhead of
JSON parsing and the larger quantity of data in general that must
be sent over the network.
Selected implementation(s). For this method, we experimented
with two different implementations. We used a REST/JSON-based
MLflow endpoint [11], and a REST/JSON-basedWeb Server imple-
mentation provided by Azure Functions (AZF) [59].

5.2 End-to-end Evaluation Time
In this experiment, we used the same Spark cluster and setup in-
troduced in §4 to measure end-to-end performance across the data
communication options described in Table 1. All experiments sent

the data in 10K batches (which is both the default size and what
we confirmed to be optimal for Spark-side performance) except
for Parquet. With Parquet, we found 100K batches minimized the
overhead of creating and opening files. For the experiment, the
containerized UDF service is co-located with each Spark executor
on the same VM. Note that although containers using text-based
communication such as MLflow and Web Server are designed to be
used in a remote managed environment, we also chose to run them
in this local setting for completeness. This way we can isolate the
parsing and protocol-related overhead in a local setting (where net-
work latency was not a major factor). It also allowed us to control
the exact number of deployed containers and keep the underlying
hardware consistent throughout the experiments.

Figure 4 shows the end-to-end time for executing the data-
intensive scoring UDF introduced in §4 on 10M rows. In the column
labelled No Container, we show the UDF written as a standard
Pandas UDF, and we use this as the baseline. The next two fastest
performers are the binary-based methods Arrow Flight and Sockets,
with a ∼1.1 and 1.3x slowdown respectively. Following these is the
file-based method Parquet with a ∼1.6x slowdown. The slowest
methods were the text-based methods MLflow and the Web Server ,
which had a ∼2.4x and ∼3x slowdown respectively from no con-
tainer. TheWeb Server container performs worse than MLflow be-
cause MLflow has built-in optimizations such as model caching [69].

We repeated the experiment for 100K, 1M, and 100M rows, and
the six options always finished in the same order with the scalability
remaining roughly constant as Figure 4, e.g., for MLflow, 33.7s for
10M rows and 338s for 100M rows; for Parquet, 23.1s for 10M rows
and 214s for 100M rows. In general, we found that Arrow Flight
is the clear winner in terms of both flexibility (with support for
11 languages and counting) and performance. To experiment with
larger data sizes, we executed a query that performed scoring using
a scikit-learn model over 725.5GB of the Criteo click log dataset [31].
The execution for No Container took 2903s, while the Arrow Flight
variant took 3028s. Thus, the overhead was slightly less than the
experiment shown in Figure 4: ∼4.3% vs ∼10%. This difference is
due to the smaller size of the Arrow Flight payload in the Criteo
example, i.e., the selected features contain many repeated values,
which in turn lead to better compression. The Arrow Flight setup
could potentially be improved further by mapping the data directly
from the database engine into the container [83], but this setup may
not work easily with all languages, setups, or database engines.
Impact of UDF profile. In §4, we introduced both the data-
intensive scoring UDF and the compute-intensive primes UDF. To
understand how the characteristics of the UDF affect the overhead
ratio, we will use those UDFs in addition to a compute/data-intensive
UDF, which is a modified version of the compute-intensive UDF
where we send 28 inputs, like the data-intensive UDF, and return
the largest prime factor of one of the inputs.

We compared those UDFs using two different implementations:
(𝑖) without using a container (baseline), and (𝑖𝑖) using a container
based on the AZF Web Server image. The results of this experi-
ment are shown in Figure 5. To normalize across the runtimes of
the different UDFs, the comparison between the baseline and Web
Server is represented as a ratio of runtimes. The relative overhead
of encoding and transferring data to the container and receiving

3163

0

1

2

3

4

100k 1m 10m 100m
Number of rows

Compute intensive
Data intensive
Compute + data intensive

Ru
nt

im
e

ra
tio

(W
eb

 S
er

ve
r /

 n
o

co
nt

ai
ne

r)

Figure 5: Comparison of local REST (self-managed) with no
container for different types of UDFs.

and decoding data from the container is less for compute-intensive
UDFs as compared to non-compute-intensive UDFs. For compute-
intensive UDFs like the primes UDF, the majority of the runtime
goes in performing the computations of the UDF itself. For computa-
tionally lightweight UDFs, such as the data-intensive scoring UDF,
the runtime of the original UDF is so fast that any additional time
needed for parsing and network latency significantly adds to the
relative runtime. These results suggest that the required compute
and data profile of the UDF will impact the selection of the data
communication method. For a single containerized UDF, the chal-
lenge of optimizing a computationally lightweight function that is
also data-intensive, is that the cost of sending data to and from the
container must be paid without outweighing the cost of performing
the function itself. As a result, optimizing the performance of light-
weight UDFs requires using a data transport technique that has
low absolute cost, such as Arrow Flight. More compute-intensive
UDFs have more flexibility, as any data transport method might
be acceptable due to small relative overhead. Although a binary
communication method may offer the absolute optimal solution
in terms of performance, there are benefits, discussed in §5.1, of
other data communication methods. Thus, the profile of the UDF
and consequently, the relative overhead of data transport to and from
the container, play a role in choosing a data communication method.

Impact of query profile. Previously we discussed experiments
involving SELECT-FROM queries. To gain insight into the effect the
query profile has on the runtime and overhead of containerized
UDFs, we experimented with (1) a GROUP BY query with an aggre-
gate UDF and (2) a JOIN query with scalar UDFs on its inputs.

For (1), we experimented with an aggregate query using the NYC
Taxi dataset [66]. The aggregate groups by start longitude (10K-
90K rows/group), leading to a shuffle read of 65.6GB, and returns a
serialized scikit-learn model trained on that group. Computation
for the GROUP BY in conjunction with the compute-intensive model
training UDF results in an overall query workload that is more
compute-intensive than any of our other experiments and causes
CPU bottlenecks. Our baseline (no container) setup had an end-to-
end runtime of 910s (CPU utilization was 80-95%) and local Arrow
Flight took 1829s (CPU utilization over 100%). Compared to Figure 3,
the overhead for Arrow Flight increased from ∼1.1x to ∼2x due to
the CPU bottleneck. We ran the same experiment with the local
Web Server , and were also CPU-bound, with overhead of ∼8x. To
obtain more compute, we reranWeb Server remotely on AZF and

Table 2: Memory footprints and initialization times.

Size on
Disk RSS (KB) docker

run (s)
UDF
Init (s)

Parquet 490MB 67,248 0.58 0.49
Sockets 352MB 47,489 0.59 0.07
Arrow Flight 516MB 70,832 0.61 0.10
Web Server 1.58GB 121,831 0.61 3.07
MLflow 1.60GB 201,994 0.62 7.02

saw only ∼5x slowdown, which was still worse than the ∼2-4.4x
slowdown shown for remote in Figure 3.

For (2), we used a self-JOIN query that executes the data-
intensive UDF on each of its inputs. We locally pre-spun up twice
the number of containers than we used in the previous examples,
repeated the data-intensive scoring experiment with Arrow Flight,
and observed that the overhead was ∼10%, as we expected. Note
however that in a resource-constrained cluster, wemight not be able
to spin up containers for all UDFs ahead of time (warm start, further
discussed in §5.3.2), leading to additional overhead. If this were an
issue, one could consider leveraging a remote containerized UDF
service. The optimization of queries with multiple containerized
UDFs is discussed in §8 and §9 but left to future work.

From these results, we can observe how more complex queries
and operators may lead to increased utilization of cluster resources,
and thus, fewer resources available for running the containerized
UDFs. For instance, in (1), the resource competition between the
shuffle read from the aggregate and the compute-intensive UDF
resulted in CPU bottlenecking that created additional overhead. On
the other hand, in (2), both the query and the UDF are less compute-
intensive, hence we could run twice the number of containers and
see the same performance overhead as with a single containerized
UDF, despite having multiple containerized UDFs in the query.

5.3 Initialization and Memory Footprint
In addition to any resources needed to facilitate database engine
to container communication, UDFs can have arbitrarily complex
requirements such as mounting a file share or launching a complex
program. For that reason, it is critical to measure the impact of
these requirements on the time taken by the container to be ready
to serve requests from the engine. We refer to this time as the
initialization time. Additionally, the questions of when and how
many containers to initialize give rise to performance trade-offs
that should be considered, which we study here.

5.3.1 Program resources and complexity. The five images intro-
duced in §5.1 (described in Table 1) have different requirements
and implementation complexity. For each of those images, Table 2
reports the image size on disk and the resident set size (RSS) as
reported in the memory.stat file. (RSS is the memory footprint
consisting of stacks, heaps, and memory maps.) This information
can be used as a very rough measure of program complexity.

There are two things that must happen before requests can be
served by the UDF program. First, the container must be in Running
state, initiated by calling docker run, which means that resources
are allocated for the container (including port forwarding/volume

3164

4.3 3.2
7.2 5.6

24.8 23.1

216.1 213.9

1975 1957

1

10

100

1000

10000

Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

100k 1m 10m 100m 1b

En
d-

to
-e

nd
 ti

m
e

(s
) l

og
 sc

al
e

3 tasks
10 tasks

12 tasks

13 tasks

30 tasks

Figure 6: Log-scale end-to-end times for the Parquet file
share UDF container with both cold and warm starts.

mounting inside the container). For each of the 5 images, we mea-
sured the time to return from docker run and transition to Running
state on our Spark cluster setup. All 5 images took 0.6s ±0.02𝑠 .

Second, after a container is running, the UDF program itself
needs to be ready. To measure this, in the Parquet case, which
uses file share, the program needs to launch so that it can read
and write data from the mounted volume. Thus, we modified the
container code to write a health check file to the shared volume
when the program is ready, and we timed when the file was cre-
ated. In the network-based cases (all others), the program needs to
launch and open a server socket before it is ready. Thus, we took
an approximate measure using curl on the socket over localhost
and waited for it to send a reset message. (If the program inside
the container was not running, we received a connection refused
message.) Table 2 shows the results of this in the UDF Init column.

The time for the program to be ready in the network-based
containers varies greatly across our examples, with the simple
TCP Sockets taking only 0.07s while the MLflow endpoint (which
launches multiple threads) took more than 7s, 100x slower. Program
complexity plays a large role in start times; this significant variation
should be taken into account for the design of containerized UDFs.

5.3.2 Prewarmed containers. It is well documented (ex: [53]) that
container cold start (i.e., container is not spun up until it is needed)
has a significant penalty over warm starts (i.e., container is spun
up preemptively). The trade-off that occurs here is that cold start
minimizes the amount of time that a container is running, which
saves resources, but by not starting the container soon enough, it
incurs a performance penalty that is especially noticeable in short
running queries. Hence, it is important to quantify the impact that
prewarming a container has on the containerized UDF scenario.

For this experiment, we run the ML model scoring UDF intro-
duced in §4 inside the Parquet image which uses file share. We
chose the Parquet image because it had median initialization time
from our Table 2 experimental results. The cluster, described in §4,
has 4 nodes and a maximum of 3 concurrent tasks per node. For the
warm start case, we pre-spin 12 containers (one per task) before
running our query. For the cold start case, each Spark task launches
its own container before processing its input data.

Figure 6 shows the time to run the Parquet containerized UDF
within a query using different input sizes: 100K–1B rows of data.
The total number of tasks that Spark executes for a given query
is computed based on the size of the input data to be processed.
For our data sizes, Spark uses from 3 to 30 tasks, shown above the

bars. Thus, for the warm start, there are idle containers for the
smaller data sizes, while for 100M, one task cannot be executed
until one of the first 12 scheduled tasks has finished. For the cold
start, the number of containers that are spun up is equal to the
number of tasks run by Spark. Our results show that the difference
between warm and cold start for each of the data sizes is 1.1, 1.6, 1.7,
2.2, and 18s, respectively. This roughly fits the expected slowdown
for the cold start based on the results of our previous experiment
shown in Table 2. For instance, the 100K row example requires 3
Spark tasks, and for cold start this means there will be ∼1 container
per node (because the 3 tasks that each spin up a container are
distributed across the 4 node cluster for a total of 12). Adding the
time to run the container (.58s) and the time for the program to
be ready (.49s) amounts to ∼1.1s, the approximate slowdown we
obtained. For 10M rows, there is likely some contention since each
of the 4 nodes spins up 3 containers at once. As Spark does not
return a result until all tasks are finished, the performance is bound
by the slowest container’s start time on the high end of the variance
bounds. For 100M rows, the startup cost almost doubles since it
cannot spin up the 13th container until the fastest of the 12 tasks
has finished. Finally, for the 1B container with 30 tasks, 2.5 waves
of tasks result in additional slowdown, but the ratio of warm:cold
slowdown remains on par (99%) with 100M.

For the MLflow container, the amount of overhead (∼7s) would
make smaller queries with a cold start prohibitively expensive. For
larger runs (for example, in Figure 3 we see that MLflow took 33.7s
for 10M rows), adding a ∼7s+.6s startup penalty starts to become
amortized, but would still be non-trivial, adding an additional ∼1.2x
slowdown in the 10M row case in addition to the slowdown that
comes from the communication overhead. The faster container start
times for Parquet means that cold start adds only a ∼7% overhead
for 10M rows. Deciding on whether to pre-spin containers therefore
depends on use case, data size, and resource utilization requirements.

5.3.3 Number of Containers. In the previous experiment, we chose
to launch one container per Spark task for the warm start scenario.
As we can see in Table 2, the amount of memory (shown as RSS size)
needed for running each container is reasonably small. However, we
wanted to evaluate the performance impact of reducing the number
of containers for use in memory-constrained environments. For
this experiment, we spun up only one container per node, i.e., the
container could have been shared by at most 3 tasks. In general, we
found a prohibitively large performance degradation when Spark
tasks were sharing the container. The main reason is that unless the
container code is adapted to handle multiple requests concurrently,
e.g., using multiple threads, the degree of parallelism is effectively
reduced from the number of tasks to the number of nodes.

5.4 Containerized UDF Life Cycle Performance
Considerations

In the previous section, we introduced a variety of container im-
ages. It is considered a best-practice to keep images as small as
possible [34], but as we saw in Table 2 and as described in other
studies [88], commonly used images can vary widely in size and
complexity. We performed studies to understand the factors im-
pacting performance when building and distributing containerized

3165

1 FROM python:3.8-slim-buster as build
2 WORKDIR /install/

3 COPY /local/reqs.txt reqs.txt # Install the Python packages
4 RUN pip install --prefix=/install -r reqs.txt

5 FROM python:3.8-slim-buster # Now the next phase of the build
6 COPY --from=build /install /usr/local # Copy the Python packages from step 4

7 WORKDIR /workdir/

8 COPY main.py /workdir

9 COPY $MODELNAME /workdir/model # Do this as late as possible

10 CMD ["python3", "-u", "/workdir/main.py"] # execute the command

Figure 7: Dockerfile example for scoring.

31

38

21

21

10

16

.4

.6

0 20 40 60 80

Fast Disk

Slow Disk

Original Image (s)

Build Push Pull Run

/

/ .2

.6

1.0

1.1

.3

.6

.4

.6

0 1 2 3
Incremental Image (s)

Figure 8: Container creation and distribution with slow and
fast disks. Left graph: original image. Right graph: incre-
mental image. (Notice x-axis scale.)

UDFs. In this section, we study the steps leading up to UDF execu-
tion related to the container building and distribution. We first look
at building additional images when there are only minor changes
to the UDF, allowing the user to rapidly generate additional con-
tainerized UDFs if their dependencies do not change significantly.
We then look at the impact of disk speed on the container life cycle.
Experimental setup. All experiments in this section were per-
formed on a VM with 4 vcpus, 16 GB RAM (Azure Standard D4s_v3
SKU) using Docker v20.10.7 with Ubuntu 18.04. The VM had a 1
Gbps network connection. Each experiment was run 5 times, drop-
ping the low/high values then averaging. We used the premium
offering of Azure Container Registry (ACR) [57], which has a mini-
mum of 100 Mbps download and 50 Mbps upload speeds as of this
writing, located in the same cloud region as our other resources.

5.4.1 Container Image Build. As we described in §3.1, the Docker-
file contains a list of commands specifying how to build the con-
tainer image. This file also determines the resulting image size and
structure, and thus, it can affect the performance of container life
cycle operations. Dockerfiles can be divided into multiple stages that
are built sequentially. Each stage starts with a FROM statement refer-
encing a base image, followed by statements that add layers to that
image. Figure 7 shows a Dockerfile creating an image that scores
the ML model ($MODELNAME), which we used with minor modifica-
tions for our Parquet, Sockets, and Arrow Flight containers. We start
with a minimal 114MB Python base image [6] on line 1. Lines 2-4
download the necessary python packages. Line 5 starts a new stage
with a fresh base image, and line 6 copies the packages into that
image. The "build" container from line 1 is discarded, and so are
the unnecessary build artifacts that were part of the pip install
process, i.e., wheels, setuptools, pycache. The resulting image is
463MB on disk. (If we did not discard the build artifacts by using

the multi-stage build, this image was 565MB on disk, meaning the
image is 102MB smaller due to leftovers from installation.)

Container clients such as Docker have built-in support for
caching image layers so that they do not have to be rebuilt, referred
to here as "incremental" images. In containerized model scoring,
it is likely that many of the dependencies (and thus, layers of the
container) remain consistent across UDFs. On line 8 we copy the
main file into the container, which contains the UDF code and the
communication code (such as Arrow Flight code), and on line 9,
we copy the model as the last step before the execution command.
Doing these steps last allows the user to change their UDF or their
model without having to rebuild the prior layers of the container,
as the first layers, (e.g., Python packages), will be cached.

For the next experiment, we wanted to evaluate the impact of
layer caching in builds. For that purpose, we built incremental
images with the same Dockerfiles, substituting only the model ref-
erenced by the $MODELNAME variable on line 9. The new model was
trained with the same version of scikit-learn and had the same
dependencies, as would be the case in a common model selection
workload, so all the layers except the last one can be reused from
the original image. In Figure 8, the right graph shows the build
times for the incremental image. We see that the incremental image
takes only .6s (slow disk) and .2s (fast disk), only 1.5% and .01% of
the time spent building the original image. This could allow users
to quickly iterate on their UDF and accompanying artifacts.

Note that it is possible to combine multiple UDFs in a single
container provided that no UDFs have conflicting dependencies. For
example, if a user created two UDFs with different models (a linear
regression and a decision tree) with the same version of scikit-learn,
the user could access each UDF from the same container using two
different URL paths (ex: myURL/linear and myURL/decisiontree).
This means there is no overhead for additional UDFs as the same
container could be reused. However, they may chose to keep only
a single UDF per container to simplify their workflow.

5.4.2 Impact of disk speed. When we created our test Spark cluster,
local disk speed was not something that we considered, as our Spark
data was all stored in a network-based location. However, during
our exploration of VM configurations, we observed that the build
and pull performance was heavily affected by disk access speed. Re-
call from §3.1 that the build phase involves compressing the image
layers and writing them to disk, and the pull phase extracts them.
We wanted to compare the impact of different disk alternatives on
build performance. For that purpose, we used two different disks:
(𝑖) the default SSD for the VMs used in our Spark cluster exper-
iments (120 Max IOPS and max throughput of 25 MBps), which
we refer to as "slow" disk, and (𝑖𝑖) an ephemeral disk [64] (8000
max burst IOPS and max burst throughput of 200 MBps), which we
refer to as "fast" disk. We monitored the disk usage using iostat,
observing that the slow disk was saturated during the build step
(the I/O utilization of the slow disk was higher than 200% at its
peak), while the fast disk did not ever reach 100% utilization.

Figure 8 shows the results for the slow and fast disk variants.
Observe that disk speed has noticeable impact over the build phase:
38s vs 31s for the original image, a ~1.2x speedup. This is bounded
by the fixed cost of downloading the Python dependencies. The
incremental image has a bigger speedup (3x) because the build step

3166

for the incremental image only copies the ML model into the last
layer and compresses it. Pushing the image is network-dependent
and therefore does not show much change, but the pull operation
again shows a significant speedup due to the decompression phase.

In general, we see that disk speed plays a surprising role on
multiple stages of the container’s life cycle, and should be taken
into consideration in local hosting.
§5 Key Takeaways:
• We found binary-based Arrow Flight to be a minimum of ∼2.4x
faster than the most efficient text-based alternative.

• Container start times vary wildly due to program size and
complexity, from .07-7s in our experiments.

• Once a UDF is containerized, subsequent minor changes to the
UDF can be done in .2-.6s in our experiments.

• Disk speed plays a large role in building and pulling container
images due to compression, up to 3x in our experiments.

6 MANAGED CONTAINERIZED UDFS
In the previous section, we studied the performance of UDFs with
an implementation using self-managed containerized UDF services
and containers local to the cluster, i.e., co-located with the Spark
executors. Another possible implementation would rely on a remote
managed cloud service, e.g., Azure Machine Learning (AML) [61] or
Azure Functions (AZF) [59], to act as the containerized UDF service
and manage the containers. (Figure 2 depicted this difference.) Next
we describe the trade-offs, across different dimensions, involved in
choosing between local and remote solutions:

• Security. Locally hosted containers do not provide isolation and
require self-management of security, whereas the use of a re-
mote managed service could support multitenancy with isolation
guarantees (if the service offers it). However, in contrast to the
remote alternative, the local setup ensures that data does not
leave the engine environment when the UDF is invoked.

• Simplicity. Managed solutions avoid the need for any infras-
tructure management and are often easier to setup. However,
they can still require tuning confusing settings, and make trou-
bleshooting performance issues and debuggingmore challenging.
Locally hosted containers require self-management of infrastruc-
ture, but can provide more access to monitor and tune the system.

• Overhead. The local container solution introduces some over-
head due to the cost of communicating between the container
and data engine. These overheads are amplified with remote ser-
vices due to network latency and potential service limits [60, 81].
However, the relative overhead of the remote versus local solu-
tion can depend on the UDF profile, discussed in this section.

• Resource Flexibility. Local containers are limited to the com-
pute resources available on the database engine. With remote
solutions, however, resources can be configured on a per UDF
basis. For example, compute-intensive UDFs could be run on
containers with specialized hardware support such as GPUs.

First, in §6.1, for the containerized UDFs designed to be run with
remote services, we look at the impact of running them in a remote
setting as opposed to the local setting. Then, in §6.2 we look at a
self-hosted local container registry vs a remote managed one, and
see how this impacts container distribution time.

3.5

7.1

33.7

3.6

7.8

45.9

3.9

8.1

44.1

4.7

8.9

47.1

1

10

100

100k 1m 10m

En
d-

to
-e

nd
 ti

m
e

(s
) l

og
 sc

al
e

Number of rows

MLflow-Local MLflow-Remote
WebServ-Local WebServ-Remote

Figure 9: Comparing local and remote performance.

6.1 AML and Azure Functions
The goal of our next experiment was to understand the performance
impact of using remote hosted services to manage the containerized
UDFs. In Table 2, we introduced both the Web Server container,
whichwas a container built from anAZF base image, and anMLfLow
container built to be compatible with AML [61]. Both of these
contain the same scoring UDF. We first ran these containers locally
on our same Spark cluster. Then, we set up the managed services to
run them in Azure in the same region that was hosting the Spark
cluster. As our local container experimental Spark setup involved a
pre-spun container-per-task, we requested that the remote service
pre-spin the same number (12) of containers prior to running our
experiments to match the local setup as closely as possible.

In Figure 9, we show the time to perform the scoring experiment
with the AML MLflow containers using their online endpoint (in
gray) and AZF (in yellow). Recall from §5.2 that the Web Server
performs worse than MLflow because MLflow has built-in opti-
mizations such as model caching. The same optimizations could be
implemented in ourWeb Server . Also,Web Server is generic to all
UDFs, which makes it a much broader solution than MLflow.

In general, one of the biggest downsides of using the remote man-
aged services was difficulty in controlling the amount of compute to
match with the output of the Spark cluster. Across the experiments,
the remote setup adds roughly a 1.02-1.36x slowdown in the AML
MLflow case and a 1.07-1.21x slowdown in the AZFWeb Server case
when compared to the same experiments locally. (These slowdowns
are in addition to the overhead of the JSON/REST based protocols vs
no container.) This is due to a combination network latency, throt-
tling, and other overhead incurred in the managed services that
we do not have insight into. The simplicity of the remote managed
service is offset by the complications of performance optimizations.
Impact of UDF profile for a remote managed service. In §5.2,
we discussed the impact of UDF profile on selection of a data com-
munication method. The results from Figure 5 suggest that the UDF
profile can also impact the choice between local or remote managed
containers. For lightweight UDFs, a containerized solution with
lower absolute overhead might be required indicating local con-
tainers. For compute-intensive UDFs, a remote service might have
acceptable overhead as long as sufficient compute can be obtained.
Although local containers may offer the optimal solution in terms
of pure performance, there are other considerations for which a
user might want to use a remote managed service as discussed
earlier in this section. In such situations, the profile of the user’s
UDF and thus the relative overhead of data transport to and from the
container play a role in choosing the type of container service.

3167

6.2 Container registry location
It is common to rely on a fully managed container registry service
to handle image distribution. However, administrators can also
manage their own registry, e.g., the head node of a database cluster
could host the registry used by the worker nodes. While the former
alternative may provide built-in reliability, scalability, and secu-
rity, the latter provides more flexibility and can potentially reduce
latency depending on the network speed and node location.

We also measured the performance of the remote managed con-
tainer registry compared to a registry set up locally. For that pur-
pose, we started a new VM to act as the local registry, connecting
it to the same vnet [62] as the original VM and enabled accelerated
networking [55] between them. We then compared the end-to-
end times to push/pull images using each registry implementation
variant. First, when pushing/pulling the entire original images,
we found that the local registry consistently provided a ∼1.1-1.2x
speedup over the remote one. For example, in the prior experiment,
the push operation for the original image took 21 seconds, while it
took 18 seconds with the local registry. This speedup would vary
based on network speeds and remote registry configuration.

In a nutshell, network latency played a moderate role in the dis-
tribution of images in our setup. However, our results suggest that
there is a trade-off between ease of use (including aspects such as
reliability and security) and performance when choosing between
a remote managed container registry and a local registry. An addi-
tional option not studied here is using a peer-to-peer registry setup
between data engine nodes for even faster distribution [7, 46, 86].

§6 Key Takeaways:
• The overhead of using a remote managed service as opposed to
a local self-managed one was ∼1.02-1.36x in our experiments.

• Using a local container registry provided a speedup of at least
10% over the remote registry in our experiments.

7 EXTENSIBILITY
Effortless portability across platforms (different database engines)
and the ability to run arbitrary code (for any UDF purpose and
not locked to a language) opens a new set of use cases for UDFs.
Suppose the data engine only supports UDFs written in language
X and the user has a UDF written in language Y. Communication
between the data engine and containerized UDF remains possible
as long as languages X and Y have bindings in some standardized
protocol. Standardized protocols such as REST/JSON or Arrow
Flight have many language bindings, enabling greater flexibility in
the language choices for UDFs for a particular data engine (§2.2
L2) and the reuse of the same UDF container across different data
engines (§2.2 L3). The ability of the containerized approach to
support UDFs in many languages enables users to rely on any
library, and to transfer functions across data engines easily. For
example, any data engine could call routines from the specially
optimized library LAPACK [27] through its C/C++ APIs without
modifying the database environment. This section comments on
extending containerized UDFs to different platforms and different
languages.

1.6 2.0

7.7

68.4

0.1

0.9

9.4

79.2

0

1

100

10k 100k 1m 10m

En
d-

to
-e

nd
 ti

m
e

(s
) l

og
 sc

al
e

Number of rows

Python extensibility
Azure Functions

Figure 10: Scoring a model in SQL Server with Python exten-
sibility and with Azure Functions.

Cross-platform portability. As we mentioned previously, the
architecture introduced in §3.2 is not specific to Spark. To demon-
strate the generality of this approach as well as the extensibility
of running containerized UDFs across data engines, we set up a
similar experiment on SQL Server. Using a single Azure VM (16
vcores, 32GB RAM) for SQL Server with DOP 16, we first scored
the model from §4 without containers inside SQL using the Python
extensibility feature which allows external scripts such as Python
to be executed. We then reused the Web Server UDF container for
model scoring with SQL Server using AZF as the remote endpoint.

Figure 10 shows that the Python extensibility has a fixed cost in
this setup, but eventually at 10M rows the remote Azure Functions
(AZF) experiment becomes slightly slower than the local setup
mainly due to computational limitations of the specific AZF plan.
In general, this experiment demonstrates the portability of the AZF
Web Server from Spark to SQL Server due to the JSON language
bindings that support many languages, including C++ (for SQL
Server) and Python (for the containerized scoring UDF). Note that
although the UDF model container is the same for both Spark and
SQL Server, the underlying hardware, number and size of VMs, and
settings in the AZF configurations across the experiments do not
allow for a head-to-head comparison of the database engines.
Programming language flexibility. As mentioned before, the
containerized approach to execution of UDFs also enables users to
write UDFs in any programming language, even those not natively
supported. For example, Spark does not support C# UDFs, but with
the containerized UDF approach, we were able to implement a C#
string manipulation UDF. Once again, this flexibility was enabled
by JSON language binding support for both C# and Python.
§7 Key Takeaways:
• Reusing a containerized UDF between database engines is pos-
sible if both engines can implement the same protocol.

• Containers open up endless UDF extensibility, e.g., flexible
programming language and library dependencies.

8 RELATEDWORK
Containerized UDFs. Popular engines such as Snowflake and Red-
shift have recently added support for external functions [22, 78]
backed by cloud serverless platforms that let users bring their own
container images, e.g., AWS Lambda [80], Azure Functions [59], or
Google Cloud Functions [36]. Communication between the engines

3168

and these platforms is done in JSON over HTTPS. These exter-
nal functions allow users to write code in languages that native
UDFs do not support or rely on libraries that native UDFs cannot
access [21, 77]. Another system is InfluxDB Kapacitor, a real time
stream processing engine that supports containerized UDF execu-
tion using protocol buffers for communication over UNIX sock-
ets [43]. Additionally, Clipper [30] is a prediction serving system
that uses containers for each model to achieve process isolation, and
CEPLESS [52] uses a containerized user-defined operator interface
to enable complex event processing. To the best of our knowledge,
our work is the first to highlight the performance implications of
various design choices in using UDFs implemented with containers,
including relying on serverless compute platforms.
Containerized databases. Containerized UDFs could be seen as
a step towards a broader containerized architecture for the whole
engine. However, to provide granularized dependency isolation for
example, the system components must be modularized. Currently
most systems containerize the DB engine as a whole [63, 68].
Container operations. Various works have analyzed the perfor-
mance of container life cycle operations. One early study [40]
focused on container startup based on a representative Docker
benchmark, showing that 76% of the time was spent on pulling
the container image. Additional works [41, 88] examine container
image characteristics that can impact push/pull times. In contrast to
those works, we examine container performance within the context
of database systems and in the form of containerized UDFs.

Further, the increasing popularity of containers over the last
few years has led to significant improvements in container startup
time and optimizations in container runtimes in general [24, 41,
44, 45, 51, 53, 87]. In addition, other recent works have focused on
reducing container data access overhead. For example, Shimmy [23]
and Faasm [83] rely on shared memory, while Cloudburst [85]
uses a low-latency key-value store and caching. We are confident
that efforts to improve container efficiency and performance will
continue, broadening the range of use cases for containerized UDFs.
UDF optimizations and extensions. UDF usage in data process-
ing systems is ubiquitous, and therefore, efficient execution of UDFs
has received much attention over the years [29, 32, 38, 39, 42, 49, 74–
76, 84]. For instance, multiple works have focused on transform-
ing UDFs into SQL [39] or relational algebraic expressions [74]
that can be more easily optimized and executed by a DBMS, while
other approaches compile queries and UDFs written in different
implementation languages into a unifying IR [32, 38] to enable opti-
mizations across language boundaries. These works often focus on
specific implementation languages for the UDFs, in contrast to con-
tainerized UDFs which provide more flexibility by supporting any
languages and libraries in a sandbox environment. Further, some
works have studied techniques to improve the integration between
the data processing system and the UDF runtime, e.g., [76] uses
row batches and buffer reutilization to accelerate the execution of
Java UDFs in a C++ engine, while [49] focuses on compiling Python
UDFs into optimized native code that can be efficiently executed
by an engine written in C. Many of those techniques are applicable
to UDF implementations based on containers. A possible direction
for future work would be the optimization of queries with multiple
containerized UDFs, for which some of this prior work on UDFs

Figure 11: Flow chart of high level recommendations.

could apply. For instance, one could imagine cases where the execu-
tion performance could be improved by relying on, e.g., data reuse
across inputs to the UDFs, caching of intermediate results in the
containerized UDF, or allowing the containerized UDF service to
execute multiple UDFs before returning control to the data engine.

Finally, frameworks like Transport [70] and Portable [72] let the
user implement a UDF only once using an engine-agnostic interface,
and invoke it from multiple engines, e.g., Spark, Presto [16], etc.
Currently those frameworks do not use containers, however they
could be extended to use containerized UDFs and thus provide easier
dependency management and portability across environments.

9 CONCLUSION
This paper presents a detailed study of containerized UDFs.
Throughout the paper, we evaluate alternative implementations us-
ing self-managed vs hosted solutions, and discuss trade-offs across
dimensions such as performance, simplicity, or flexibility. We also
demonstrate the flexibility of containerized UDFs by executing
them across platforms and languages. A simplified summary of im-
plementation recommendations based on our findings is depicted
in Figure 11. Although this diagram overlooks some of the com-
plexities of containerized systems, it aims to provide some initial
concrete recommendations based on our results.

Our results suggest important and promising directions for fu-
ture work. For instance, wide adoption of more optimal (yet general-
purpose) communication frameworks, such as Arrow Flight, could
lead to significant performance improvements, especially for remote
container services. In addition, native support for containerized
UDFs in data engines could open up new possibilities for query
optimization, such as UDF/operator fusion to reduce data access
overhead as well as optimizing data communication for queries
with multiple UDFs. Another interesting direction is integrating
containers within frameworks aimed at generating cross-platform
UDFs from engine-agnostic definitions, such as Transport UDFs.
We expect the insights from our work will be useful to researchers
and practitioners that are trying to make sense of the large number
of alternatives to consider while designing this type of system.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their detailed
and constructive comments that helped us improve the paper. We
thank the MDCS (Microsoft Development Center Serbia) team, es-
pecially Andrea Batina and Vukashin Stefanovic, for the SQL Server
experiment and related code. We also thank the following people
that contributed to this work through their insightful feedback and
collaboration: Jason Wilder, Carlo Curino, and Markus Weimer.

3169

REFERENCES
[1] 2022. Apache Arrow. https://arrow.apache.org/
[2] 2022. Apache Spark. https://spark.apache.org/
[3] 2022. Apache Thrift. https://thrift.apache.org/
[4] 2022. Docker. https://www.docker.com/
[5] 2022. Docker Hub. https://hub.docker.com/
[6] 2022. Docker Hub Python Images. https://hub.docker.com/_/python/
[7] 2022. Dragonfly. https://d7y.io/en-us/
[8] 2022. HDInsight. https://azure.microsoft.com/free/hdinsight
[9] 2022. JFrog Artifactory. https://jfrog.com/artifactory/
[10] 2022. Microsoft SQL Server. https://www.microsoft.com/sql-server/
[11] 2022. MLFlow Rest API. https://www.mlflow.org/docs/latest/rest-api.html
[12] 2022. numpy. https://numpy.org/
[13] 2022. Pandas UDF API - PySpark SQL Module. https://spark.apache.org/docs/

latest/api/python/reference/api/pyspark.sql.functions.pandas_udf.html
[14] 2022. pickle. https://docs.python.org/3/library/pickle.html
[15] 2022. pip - Requirements File Format. https://pip.pypa.io/en/stable/reference/

requirements-file-format/
[16] 2022. PrestoDB. https://prestodb.io/
[17] 2022. scikit-learn. https://scikit-learn.org/
[18] 2022. SGDRegressor documentation refers to non-existent loss metric. https:

//github.com/scikit-learn/scikit-learn/issues/23375
[19] 2022. Sigma Computing. https://www.sigmacomputing.com/
[20] 2022. sklearn.utils.fixes.MaskedArray removed in 0.23.0. https://github.com/scikit-

learn/scikit-learn/issues/17198
[21] 2022. Snowflake: Advantages of External Functions. https://docs.snowflake.

com/en/sql-reference/external-functions-introduction.html#advantages-of-
external-functions

[22] 2022. Snowflake: Introduction to External Functions. https://docs.snowflake.com/
en/sql-reference/external-functions-introduction.html

[23] Marcelo Abranches, Sepideh Goodarzy, Maziyar Nazari, Shivakant Mishra, and
Eric Keller. 2019. Shimmy: Shared Memory Channels for High Performance
{Inter-Container} Communication. In 2nd USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 19).

[24] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Light-
weight Virtualization for Serverless Applications. In 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2020. 419–434.

[25] Kavita Agarwal, Bhushan Jain, and Donald E. Porter. 2015. Containing the Hype.
In Proceedings of the 6th Asia-Pacific Workshop on Systems. 1–9.

[26] Tanveer Ahmad, Zaid Al Ars, and H. Peter Hofstee. 2022. Benchmarking Apache
Arrow Flight – A wire-speed protocol for data transfer, querying and microser-
vices. https://doi.org/10.48550/ARXIV.2204.03032

[27] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. 1999. LAPACK Users’
Guide (third ed.). Society for Industrial and Applied Mathematics, Philadelphia,
PA.

[28] Michael Armbrust, Tathagata Das, Sameer Paranjpye, Reynold Xin, Shixiong
Zhu, Ali Ghodsi, Burak Yavuz, Mukul Murthy, Joseph Torres, Liwen Sun, Peter A.
Boncz, Mostafa Mokhtar, Herman Van Hovell, Adrian Ionescu, Alicja Luszczak,
Michal Switakowski, Takuya Ueshin, Xiao Li, Michal Szafranski, Pieter Senster,
and Matei Zaharia. 2020. Delta Lake: High-Performance ACID Table Storage
over Cloud Object Stores. Proc. VLDB Endow. 13, 12 (2020), 3411–3424.

[29] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing
database-backed applications with query synthesis. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI. ACM, 3–14.

[30] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A low-latency online prediction serving system.
In 14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17). 613–627.

[31] Criteo. 2022. Criteo 1TB Click Logs dataset. https://ailab.criteo.com/download-
criteo-1tb-click-logs-dataset/

[32] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig,
Ugur Çetintemel, and Stan Zdonik. 2015. An Architecture for Compiling UDF-
centric Workflows. Proc. VLDB Endow. 8, 12 (2015), 1466–1477.

[33] Databricks. 2022. Databricks Notebook-scoped Python libraries. https://docs.
databricks.com/libraries/notebooks-python-libraries.html

[34] Docker. 2022. Best practices for writing Dockerfiles. https://docs.docker.com/
develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds

[35] Raul Castro Fernandez, Pranav Subramaniam, and Michael J. Franklin. 2020. Data
Market Platforms: Trading Data Assets to Solve Data Problems. Proc. VLDB
Endow. 13, 11 (2020), 1933–1947.

[36] Google. 2022. Cloud Functions. https://cloud.google.com/functions
[37] Google. 2022. Google Cloud Container Registry. https://cloud.google.com/

container-registry
[38] PhilippMarian Grulich, Steffen Zeuch, and VolkerMarkl. 2021. Babelfish: Efficient

Execution of Polyglot Queries. Proc. VLDB Endow. 15, 2 (2021), 196–210.

[39] Stefan Hagedorn, Steffen Kläbe, and Kai-Uwe Sattler. 2021. Putting Pandas in a
Box. In 11th Conference on Innovative Data Systems Research, CIDR.

[40] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2016. Slacker: Fast distribution with lazy docker containers. In
14th {USENIX} Conference on File and Storage Technologies ({FAST} 16). 181–195.

[41] Zhuo Huang, Song Wu, Song Jiang, and Hai Jin. 2019. Fastbuild: Accelerating
docker image building for efficient development and deployment of container.
In 2019 35th Symposium on Mass Storage Systems and Technologies (MSST). IEEE,
28–37.

[42] Fabian Hueske, Mathias Peters, Matthias Sax, Astrid Rheinländer, Rico Bergmann,
Aljoscha Krettek, and Kostas Tzoumas. 2012. Opening the Black Boxes in Data
Flow Optimization. Proc. VLDB Endow. 5, 11 (2012), 1256–1267.

[43] InfluxDB. 2022. Write socket-based user-defined functions (UDFs). https://docs.
influxdata.com/kapacitor/v1.6/guides/socket_udf/

[44] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2018. Serv-
ing deep learning models in a serverless platform. In 2018 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 257–262.

[45] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless
Computing. Technical Report UCB/EECS-2019-3. EECS Department, University of
California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-
2019-3.html

[46] Wang Kangjin, Yang Yong, Li Ying, Luo Hanmei, and Ma Lin. 2017. Fid: A faster
image distribution system for docker platform. In 2017 IEEE 2nd International
Workshops on Foundations and Applications of Self* Systems (FAS* W). IEEE,
191–198.

[47] Konstantinos Karanasos, Matteo Interlandi, Fotis Psallidas, Rathijit Sen,
Kwanghyun Park, Ivan Popivanov, Doris Xin, Supun Nakandala, Subru Krish-
nan, Markus Weimer, Yuan Yu, Raghu Ramakrishnan, and Carlo Curino. 2020.
Extending Relational Query Processing with ML Inference. In 10th Conference
on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands,
January 12-15, 2020.

[48] Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. 2020. Learning Models over Relational Data Using Sparse
Tensors and Functional Dependencies. ACM Trans. Database Syst. 45, 2 (2020),
7:1–7:66.

[49] Steffen Kläbe, Robert DeSantis, Stefan Hagedorn, and Kai-Uwe Sattler. 2022.
Accelerating Python UDFs in Vectorized Query Execution. In 12th Conference on
Innovative Data Systems Research, CIDR.

[50] Hyukjin Kwon. 2020. How to Manage Python Dependencies in PyS-
park. https://databricks.com/blog/2020/12/22/how-to-manage-python-
dependencies-in-pyspark.html

[51] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep Pallickara.
2018. Serverless computing: An investigation of factors influencing microservice
performance. In 2018 IEEE International Conference on Cloud Engineering (IC2E).
IEEE, 159–169.

[52] Manisha Luthra, Sebastian Hennig, Kamran Razavi, Lin Wang, and Boris Kolde-
hofe. 2020. Operator as a service: Stateful serverless complex event processing.
In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 1964–1973.

[53] Johannes Manner, Martin Endreß, Tobias Heckel, and Guido Wirtz. 2018. Cold
start influencing factors in function as a service. In 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE,
181–188.

[54] Wes McKinney. 2019. Apache Arrow Flight. https://arrow.apache.org/blog/2019/
10/13/introducing-arrow-flight/

[55] Microsoft. 2022. Accelerated Networking. https://docs.microsoft.com/en-us/
azure/virtual-network/create-vm-accelerated-networking-cli

[56] Microsoft. 2022. Azure Container Registry. https://azure.microsoft.com/services/
container-registry/

[57] Microsoft. 2022. Azure Container Registry Service Tiers. https://docs.microsoft.
com/en-us/azure/container-registry/container-registry-skus

[58] Microsoft. 2022. Azure Data Lake Storage. https://azure.microsoft.com/en-
us/services/storage/data-lake-storage/

[59] Microsoft. 2022. Azure Functions. https://azure.microsoft.com/services/functions/
[60] Microsoft. 2022. Azure Functions hosting options: service limits. https://docs.

microsoft.com/en-us/azure/azure-functions/functions-scale#service-limits
[61] Microsoft. 2022. Azure Machine Learning. https://docs.microsoft.com/azure/

machine-learning/
[62] Microsoft. 2022. Azure Virtual Network. https://docs.microsoft.com/en-us/azure/

virtual-network/virtual-networks-overview
[63] Microsoft. 2022. Create Azure Arc-enabled SQL Managed Instance using Kuber-

netes tools. https://docs.microsoft.com/en-us/azure/azure-arc/data/create-sql-
managed-instance-using-kubernetes-native-tools

[64] Microsoft. 2022. Dv3 and Dsv3-series. https://docs.microsoft.com/en-us/azure/
virtual-machines/dv3-dsv3-series

3170

https://arrow.apache.org/
https://spark.apache.org/
https://thrift.apache.org/
https://www.docker.com/
https://hub.docker.com/
https://hub.docker.com/_/python/
https://d7y.io/en-us/
https://azure.microsoft.com/free/hdinsight
https://jfrog.com/artifactory/
https://www.microsoft.com/sql-server/
https://www.mlflow.org/docs/latest/rest-api.html
https://numpy.org/
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.functions.pandas_udf.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.functions.pandas_udf.html
https://docs.python.org/3/library/pickle.html
https://pip.pypa.io/en/stable/reference/requirements-file-format/
https://pip.pypa.io/en/stable/reference/requirements-file-format/
https://prestodb.io/
https://scikit-learn.org/
https://github.com/scikit-learn/scikit-learn/issues/23375
https://github.com/scikit-learn/scikit-learn/issues/23375
https://www.sigmacomputing.com/
https://github.com/scikit-learn/scikit-learn/issues/17198
https://github.com/scikit-learn/scikit-learn/issues/17198
https://docs.snowflake.com/en/sql-reference/external-functions-introduction.html#advantages-of-external-functions
https://docs.snowflake.com/en/sql-reference/external-functions-introduction.html#advantages-of-external-functions
https://docs.snowflake.com/en/sql-reference/external-functions-introduction.html#advantages-of-external-functions
https://docs.snowflake.com/en/sql-reference/external-functions-introduction.html
https://docs.snowflake.com/en/sql-reference/external-functions-introduction.html
https://doi.org/10.48550/ARXIV.2204.03032
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://docs.databricks.com/libraries/notebooks-python-libraries.html
https://docs.databricks.com/libraries/notebooks-python-libraries.html
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds
https://cloud.google.com/functions
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://docs.influxdata.com/kapacitor/v1.6/guides/socket_udf/
https://docs.influxdata.com/kapacitor/v1.6/guides/socket_udf/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://databricks.com/blog/2020/12/22/how-to-manage-python-dependencies-in-pyspark.html
https://databricks.com/blog/2020/12/22/how-to-manage-python-dependencies-in-pyspark.html
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://azure.microsoft.com/services/container-registry/
https://azure.microsoft.com/services/container-registry/
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-skus
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-skus
https://azure.microsoft.com/en-us/services/storage/data-lake-storage/
https://azure.microsoft.com/en-us/services/storage/data-lake-storage/
https://azure.microsoft.com/services/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#service-limits
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#service-limits
https://docs.microsoft.com/azure/machine-learning/
https://docs.microsoft.com/azure/machine-learning/
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/azure-arc/data/create-sql-managed-instance-using-kubernetes-native-tools
https://docs.microsoft.com/en-us/azure/azure-arc/data/create-sql-managed-instance-using-kubernetes-native-tools
https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series

[65] Microsoft. 2022. Manage libraries for Apache Spark in Azure Synapse Analyt-
ics. https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-
spark-azure-portal-add-libraries

[66] Microsoft. 2022. NYC Taxi & Limousine Commission - yellow taxi trip
records. https://docs.microsoft.com/en-us/azure/open-datasets/dataset-taxi-
yellow?tabs=pyspark

[67] Microsoft. 2022. Power BI. https://powerbi.microsoft.com/
[68] Microsoft. 2022. Running Apache Spark jobs on AKS. https://docs.microsoft.com/

en-us/azure/aks/spark-job
[69] MLflow. 2022. MLFlow Models / Model API. https://www.mlflow.org/docs/latest/

models.html#model-api
[70] Walaa Eldin Moustafa. 2018. Transport UDFs. https://engineering.linkedin.com/

blog/2018/11/using-translatable-portable-UDFs
[71] Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi, and

Konstantinos Karanasos. 2022. End-to-end Optimization of Machine Learning
Prediction Queries. In Proceedings of the ACM SIGMOD International Conference
on Management of Data.

[72] Tejas Patil. 2021. Portable UDFs: Write Once, Run Anywhere. https://databricks.
com/session_na21/portable-udfs-write-once-run-anywhere

[73] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[74] Karthik Ramachandra, Kwanghyun Park, K Venkatesh Emani, Alan Halverson,
César Galindo-Legaria, and Conor Cunningham. 2017. Froid: Optimization of
imperative programs in a relational database. Proceedings of the VLDB Endowment
11, 4 (2017), 432–444.

[75] Astrid Rheinländer, Ulf Leser, and Goetz Graefe. 2017. Optimization of Complex
Dataflows with User-Defined Functions. ACM Comput. Surv. 50, 3 (2017), 38:1–
38:39. https://doi.org/10.1145/3078752

[76] Viktor Rosenfeld, Rene Mueller, Pinar Tözün, and Fatma Özcan. 2017. Processing
Java UDFs in a C++ environment. In Proceedings of the 2017 Symposium on Cloud
Computing. 419–431.

[77] Brandon Schur. 2022. Data Tokenization with Amazon Redshift and Pro-
tegrity. https://aws.amazon.com/blogs/apn/data-tokenization-with-amazon-
redshift-and-protegrity/

[78] Amazon Web Services. 2022. Amazon Redshift: Creating a scalar Lambda
UDF. https://docs.aws.amazon.com/redshift/latest/dg/udf-creating-a-lambda-
sql-udf.html

[79] Amazon Web Services. 2022. Elastic Container Registry. https://aws.amazon.
com/ecr/

[80] AmazonWeb Services. 2022. Lambda - Serverless Computing. https://aws.amazon.
com/lambda/

[81] Amazon Web Services. 2022. Lambda quotas. https://docs.aws.amazon.com/
lambda/latest/dg/gettingstarted-limits.html

[82] Prateek Sharma, Lucas Chaufournier, Prashant J. Shenoy, and Y. C. Tay. 2016.
Containers and Virtual Machines at Scale: A Comparative Study. In Proceedings
of the 17th International Middleware Conference. 1–13.

[83] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation for effi-
cient stateful serverless computing. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). 419–433.

[84] Leonhard Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, and Tim Kraska.
2021. Tuplex: Data Science in Python at Native Code Speed. In Proceedings of the
2021 International Conference on Management of Data. 1718–1731.

[85] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proc. VLDB Endow. 13, 11 (2020), 2438–2452.

[86] Uber. 2022. Kraken. https://github.com/uber/kraken
[87] LiangWang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, andMichael Swift.

2018. Peeking behind the curtains of serverless platforms. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18). 133–146.

[88] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Arnab K Paul, Keren Chen, and Ali R Butt. 2020. Large-scale
analysis of docker images and performance implications for container storage
systems. IEEE Transactions on Parallel and Distributed Systems 32, 4 (2020), 918–
930.

3171

https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-azure-portal-add-libraries
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-azure-portal-add-libraries
https://docs.microsoft.com/en-us/azure/open-datasets/dataset-taxi-yellow?tabs=pyspark
https://docs.microsoft.com/en-us/azure/open-datasets/dataset-taxi-yellow?tabs=pyspark
https://powerbi.microsoft.com/
https://docs.microsoft.com/en-us/azure/aks/spark-job
https://docs.microsoft.com/en-us/azure/aks/spark-job
https://www.mlflow.org/docs/latest/models.html#model-api
https://www.mlflow.org/docs/latest/models.html#model-api
https://engineering.linkedin.com/blog/2018/11/using-translatable-portable-UDFs
https://engineering.linkedin.com/blog/2018/11/using-translatable-portable-UDFs
https://databricks.com/session_na21/portable-udfs-write-once-run-anywhere
https://databricks.com/session_na21/portable-udfs-write-once-run-anywhere
https://doi.org/10.1145/3078752
https://aws.amazon.com/blogs/apn/data-tokenization-with-amazon-redshift-and-protegrity/
https://aws.amazon.com/blogs/apn/data-tokenization-with-amazon-redshift-and-protegrity/
https://docs.aws.amazon.com/redshift/latest/dg/udf-creating-a-lambda-sql-udf.html
https://docs.aws.amazon.com/redshift/latest/dg/udf-creating-a-lambda-sql-udf.html
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://github.com/uber/kraken

	Bild19_af_image:

